skip to main content


Search for: All records

Creators/Authors contains: "Elles, Christopher G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Free, publicly-accessible full text available June 16, 2024
  3. Some diarylethene molecular switches have a low quantum yield for cycloreversion when excited by a single photon, but react more efficiently following sequential two-photon excitation. The increase in reaction efficiency depends on both the relative time delay and the wavelength of the second photon. This paper examines the wavelength-dependent mechanism for sequential excitation using excited-state resonance Raman spectroscopy to probe the ultrafast (sub-30 fs) dynamics on the upper electronic state following secondary excitation. The approach uses femtosecond stimulated Raman scattering (FSRS) to measure the time-gated, excited-state resonance Raman spectrum in resonance with two different excited-state absorption bands. The relative intensities of the Raman bands reveal the initial dynamics in the higher-lying states, Sn, by providing information on the relative gradients of the potential energy surfaces that are accessed via secondary excitation. The excited-state resonance Raman spectra reveal specific modes that become enhanced depending on the Raman excitation wavelength, 750 or 400 nm. Many of the modes that become enhanced in the 750 nm FSRS spectrum are assigned as vibrational motions localized on the central cyclohexadiene ring. Many of the modes that become enhanced in the 400 nm FSRS spectrum are assigned as motions along the conjugated backbone and peripheral phenyl rings. These observations are consistent with earlier measurements that showed higher efficiency following secondary excitation into the lower excited-state absorption band and illustrate a powerful new way to probe the ultrafast dynamics of higher-lying excited states immediately following sequential two-photon excitation. 
    more » « less
  4. Abstract Photoexcitation of cyclic ketones leads to the expulsion of carbon monoxide and a mixture of products derived from diradical intermediates. Here we show that synthetic utility of this process is improved if strained heterocyclic ketones are used. Photochemistry of 3‐oxetanone and N ‐Boc‐3‐azetidinone has not been previously described. Decarbonylation of these 4‐membered rings proceeds through a step‐wise Norrish type I cleavage of the C−C bond from the singlet excited state. Ylides derived from both compounds are high‐energy species that are kinetically stable long enough to undergo [3+2] cycloaddition with a variety of alkenes and produce substituted tetrahydrofurans and pyrrolidines. The reaction has a sufficiently wide scope to produce scaffolds that were either previously inaccessible or difficult to synthesize, thereby providing experimental access to new chemical space. 
    more » « less
  5. This article highlights the role of spatial confinement in controlling the fundamental behavior of molecules. Select examples illustrate the value of using space as a tool to control and understand excited state dynamics through a combination of ultrafast spectroscopy and conventional steady state methods. Molecules of interest were confined within a closed molecular capsule, derived from a cavitand known as octa acid (OA), whose internal void space is sufficient to accommodate molecules as long as tetracene and as wide as pyrene. The free space, i.e. the space that is left following the occupation of the guest within the host, is shown to play a significant role in altering the behavior of guest molecules in the excited state. The results reported here suggest that in addition to weak interactions that are commonly emphasized in supramolecular chemistry, the extent of empty space (i.e. the remaining void space within the capsule) is important in controlling the excited state behavior of confined molecules on ultrafast time scales. For example, the role of free space in controlling the excited state dynamics of guest molecules is highlighted by probing the cis-trans isomerization of stilbenes and azobenzenes within the OA capsule. Isomerization of both types of molecule are slowed when they are confined within a small space, with encapsulated azobenzenes taking a different reaction pathway compared to that in solution upon excitation to S¬2. In addition to steric constraints, confinement of reactive molecules in a small space helps to override the need for diffusion to bring the reactants together, thus enabling the measurement of processes that occur faster than the time scale for diffusion. The advantages of reducing free space and confining reactive molecules are illustrated by recording unprecedented excimer emission from anthracene and by measuring ultrafast electron transfer rates across the organic molecular wall. By monitoring the translational motion of anthracene pairs in a restricted space it has been possible to document the pathway undertaken by excited anthracene from inception to the formation of the excimer on the excited state surface. Similarly, ultrafast electron transfer experiments pursued here have established that the process is not hindered by a molecular wall. Apparently, the electron can cross the OA capsule wall provided the donor and acceptor are in close proximity. Measurements on the ultrafast time scale provide crucial insights for each of the examples presented here, emphasizing the value of both ‘space’ and ‘time’ in controlling and understanding the dynamics of excited molecules. 
    more » « less
  6. null (Ed.)
    Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans -azobenzene ( t -Az) and several alkyl-substituted t -Az derivatives encapsulated in a water-soluble supramolecular host–guest complex. Encapsulation increases the excited-state lifetimes and alters the yields of the trans → cis photoisomerization reaction compared with solution. Kinetic modeling of the transient spectra for unsubstituted t -Az following nπ* and ππ* excitation reveals steric trapping of excited-state species, as well as an adiabatic excited-state trans → cis isomerization pathway for confined molecules that is not observed in solution. Analysis of the transient spectra following ππ* excitation for a series of 4-alkyl and 4,4′-dialkyl substituted t -Az molecules suggests that additional crowding due to lengthening of the alkyl tails results in deeper trapping of the excited-state species, including distorted trans and cis structures. The variation of the dynamics due to crowding in the confined environment provides new evidence to explain the violation of Kasha's rule for nπ* and ππ* excitation of azobenzenes based on competition between in-plane inversion and out-of-plane rotation channels. 
    more » « less